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Abstract

This paper discusses a steady-state equilibrium configuration and a set of linearized equations of motion for the dynamic

analysis of a semi-circular fluid-conveying pipe. Through application of the perturbation method to the equations of

motion for a semi-circular pipe, new nonlinear equilibrium equations were derived and the equations of motion were

linearized around the equilibrium configuration of the pipe. The equilibrium configurations obtained from the derived

nonlinear equilibrium equations were compared to configurations from the linear equilibrium equations of other

researchers. Additionally, the natural frequencies computed in this study were compared with the frequencies presented

in a previous study. It was found that the steady-state equilibrium configuration should be determined using the proposed

nonlinear equilibrium equations rather than previous linear equilibrium equations. Furthermore, it was shown that

the natural frequencies computed with the proposed equilibrium equations were more accurate than the frequencies of

other studies.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic characteristics of pipes conveying fluid have been investigated by many researchers because of
their technological importance. Many papers have considered straight pipes to analyse pipe vibrations and
stability; curved pipes, on the other hand, have attracted relatively little attention. Since most piping systems
are composed of both straight and curved pipes, considerable research concerning the dynamics of curved
pipes is required to reduce the vibrations of systems and guarantee their stability.

An early analytical model for the dynamics and stability of a curved pipe conveying fluid was suggested by
Chen [1,2], who assumed that the centreline of the curved pipe is inextensible. Chen claimed that the curved
pipe shows instability similarly to a straight pipe when the fluid velocity exceeds a certain critical value. Hill
and Davis [3], as well as Doll and Mote [4], found that if the centreline is extensible, a fluid-conveying curved
pipe does not lose stability, even for high fluid velocities. On the other hand, Misra et al. [5,6] analysed and
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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compared the dynamics for two cases of fluid-conveying curved pipes with extensible and inextensible
centrelines. They concluded that the dynamic analysis of curved pipes with an extensible centreline is more
reasonable than analysis with an inextensible centreline.

However, the study on the extensible curved pipe by Misra et al. [6] was based on the assumption of small
pipe deformation, which is valid only when the fluid velocity is relatively low. Under this assumption, the
steady-state equilibrium equations of the curved pipe become linear and the equations of motion linearized
around an equilibrium configuration are identical to the equations presented by Misra et al. [6]. When the pipe
deformation is not small, the natural frequencies computed with these equilibrium and linearized equations
can differ largely from the actual natural frequencies. Thus, it is also valuable to investigate the equilibrium
configuration and the natural frequencies of a pipe with large deformation.

This study discusses equations for steady-state equilibrium and equations of motion linearized around an
equilibrium configuration for a semi-circular fluid-conveying pipe. After applying the perturbation method to
the nonlinear equations of motion for the semi-circular pipe, nonlinear steady-state equilibrium equations and
equations of motion linearized in the neighbourhood of an equilibrium configuration were derived. The
derived equilibrium equations are different from the corresponding equations presented in Ref. [6]; that is, the
former is nonlinear and the latter is linear. Steady-state equilibrium configurations computed with both
the linear and nonlinear equilibrium equations were compared and verified. Furthermore, after establishing
three types of modelling for the equilibrium equations and the linearized equations, the natural frequencies
computed through use of these models were evaluated and compared.
2. Equations of motion

A semi-circular pipe conveying fluid, shown in Fig. 1, was considered for investigation of the steady-state
equilibrium configuration and linearized equations of motion. A curved pipe with a centreline radius R is
clamped at both the ends and conveys fluid with a constant velocity U. The cross-sectional area, the area
moment of inertia about the z-axis, and Young’s modulus of the pipe are denoted by A, I and E, respectively.
The pipe mass and fluid mass per unit length are given by mp and mf , respectively. This paper assumes that the
pipe is slender and extensible, that the flow is an inviscid plug flow, and that the effect of gravity is negligible.

The equations of motion used in this study are equivalent to the equations presented by Misra et al. [6],
where only the in-plane motion of the semi-circular pipe conveying fluid is considered. This study uses an xyz

coordinate system fixed to the pipe to express the equations of motion for the semi-circular pipe. The x and y

axes are in the radial and circumferential directions of the pipe centreline, respectively, and the z-axis is
perpendicular to the plane containing the pipe centreline. The angle y is measured from the X-axis fixed in
space. The radial and circumferential displacements of a point on the pipe centreline are denoted by u and v,
respectively. Using the notation given above, the nonlinear equations of in-plane motion presented in Ref. [6]
can be rewritten as

ðmp þmf Þ €uþ 2mf ðU=RÞð _u0 � _vÞ þmf ðU=RÞ2ðu00 � v0Þ þ EIðuiv � v000Þ=R4

þ EAðuþ v0Þ=R2 � EA½ðuþ v0Þðu0 � vÞ�0=R3 ¼ mf U2=R, ð1Þ
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Fig. 1. Semi-circular pipe conveying fluid with velocity U: (a) top view and (b) cross-section.
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ðmp þmf Þ€vþmf ðU=RÞð _uþ _v0Þ þmf ðU=RÞ2ðu0 � vÞ þ EIðu000 � v00Þ=R4

� EAðu0 þ v000Þ=R2 � EAðuþ v0Þðu0 � vÞ=R3 ¼ 0, ð2Þ

where the superposed dot represents the derivative with respect to time, and the prime represents the derivative
with respect to y. The clamped–clamped boundary conditions of the pipe are given by

u ¼ u0 ¼ v ¼ 0 at y ¼ 0;p. (3)

The steady-state equilibrium configuration and the equations linearized in the neighbourhood of the
equilibrium configuration were obtained by applying the perturbation method to Eqs. (1) and (2). In
accordance with the perturbation method, displacements can be expressed as the sum of the steady-state
equilibrium displacement and the perturbed displacement around the equilibrium displacements. The radial
displacement u and the circumferential displacement v may be represented by

u ¼ ue þ Du; v ¼ ve þ Dv, (4)

where ue and ve are the displacements corresponding to the equilibrium configuration and Du and Dv are the
perturbed displacements of u and v around the equilibrium configuration. Because ue and ve have constant
values in a steady state, their derivatives with respect to time become zero. Therefore, when Eqs. (4) are
substituted into Eqs. (1) and (2), the steady-state equilibrium equations and the linearized equations of motion
can be derived. The derived equilibrium equations are

mf ðU=RÞ2ðu00e � v0eÞ þ EIðuiv
e � v000e Þ=R4 þ EAðue þ v0eÞ=R2 � EA½ðue þ v0eÞðu

0
e � veÞ�

0=R3 ¼ mf U2=R, (5)

mf ðU=RÞ2ðu0e � veÞ þ EIðu000e � v00e Þ=R4 � EAðu0e þ v00e Þ=R2 � EAðue þ v0eÞðu
0
e � veÞ=R3 ¼ 0. (6)

The equations of motion linearized in the neighbourhood of the equilibrium configuration are given by

ðmp þmf Þ €uþ 2mf ðU=RÞð _u0 � _vÞ þmf ðU=RÞ2ðu00 � v0Þ þ EIðuiv � v000Þ=R4

þ EAðuþ v0Þ=R2 � EA½ðue þ v0eÞðu
0 � vÞ�0=R3 � EA½ðu0e � veÞðuþ v0Þ�0=R3 ¼ 0, ð7Þ

ðmp þmf Þ€vþmf ðU=RÞð _uþ _v0Þ þmf ðU=RÞ2ðu0 � vÞ þ EIðu000 � v00Þ=R4

� EAðu0 þ v00Þ=R2 � EAðue þ v0eÞðu
0 � vÞ=R3 � EAðu0e � veÞðuþ v0Þ=R3 ¼ 0, ð8Þ

where D is deleted from Du and Dv for simplicity of notation. Note that Eqs. (5) and (6) are nonlinear ordinary
differential equations. Eqs. (7) and (8) become linear partial differential equations after ue and ve are
determined; also, it should be noted that Eqs. (7) and (8) are influenced by the equilibrium configuration,
because they include ue and ve.

3. Discretization

Approximate solutions were obtained for the equilibrium equations and the linearized equations of motion
through the use of the Galerkin method. In order to find approximate solutions in finite-dimensional function
spaces, both the equilibrium equations and the linearized equations of motion were discretized with the
assumption that the solutions are linear combinations of the basis functions. The radial and circumferential
displacements representing the equilibrium configuration can be expressed as

ueðyÞ ¼
XN

n¼1

X e
nUnðyÞ; veðyÞ ¼

XN

n¼1

Y e
nVnðyÞ, (9)

where N is the total number of basis functions; X e
n and Y e

n are constants to be determined; and UnðyÞ and
VnðyÞ are the basis functions selected as comparison functions:

UnðyÞ ¼ cosh lny� cos lny�
cosh pln � cos pln

sinh pln � sin pln

ðsinh lny� sin lnyÞ, (10)

V nðyÞ ¼ sin ny, (11)



ARTICLE IN PRESS
D. Jung, J. Chung / Journal of Sound and Vibration 294 (2006) 410–417 413
where ln are the roots of

cosh pln cos pln � 1 ¼ 0. (12)

Eqs. (10) and (11) are well-known eigenfunctions for the bending and axial vibrations of a beam, respectively.
Similarly, the radial and circumferential displacements for the perturbed motion may be represented by

uðt; yÞ ¼
XN

n¼1

X nðtÞUnðyÞ; vðt; yÞ ¼
XN

n¼1

Y nðtÞV nðyÞ, (13)

where X nðtÞ and Y nðtÞ are functions of time.
The discretized equations are obtained by application of the Galerkin method to Eqs. (5)–(8) with the series

solutions of Eqs. (9) and (13). These discretized equations can be represented by vector equations; the
equilibrium equations may be expressed as

ðKþU2HÞXe þNðXeÞ ¼ U2F, (14)

where K is the structural stiffness matrix, H is the matrix related to the centrifugal fluid force, NðXeÞ is
the nonlinear force vector, F is the external force vector due to the fluid flow, and Xe is an unknown vector
given by

Xe ¼ fX e
1;Y

e
1;X

e
2;Y

e
2; . . . ;X

e
N ;Y

e
Ng

T. (15)

The equations of motion linearized around the equilibrium configuration can be represented by

M €XðtÞ þ 2UG _XðtÞ þ ðKþ KT þU2HÞXðtÞ ¼ 0, (16)

where M is the mass matrix, G is the matrix related to the gyroscopic force, KT is the tangential stiffness
matrix, and XðtÞ is an unknown vector given by

XðtÞ ¼ fX 1ðtÞ;Y 1ðtÞ;X 2ðtÞ;Y 2ðtÞ; . . . ;X NðtÞ;Y N ðtÞg
T. (17)

Note that the size of all the matrices is 2N � 2N and the size of all the vectors is 2N � 1.

4. Discussion

The following material properties and dimensions were used in this study: mp ¼ mf ¼ 1:78 kg=m,
E ¼ 10GPa, R ¼ 0:5m, A ¼ 2:473� 10�4 m2 and I ¼ 7:491� 10�8 m4. For convenience of comparison
between computed results, the dimensionless natural frequency o and the dimensionless fluid velocity U were
introduced as follows:

on ¼ onR2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mp þmf

EI

r
; U ¼ UR

ffiffiffiffiffiffi
mf

EI

r
, (18)

where on is the natural frequency of the fluid-conveying pipe.
To verify the computation results presented in this paper, the convergence characteristics of the natural

frequencies were investigated with the discretized equations. For this study, when the number of basis
functions increased, the convergences of the natural frequencies were examined for the following two cases:
zero fluid velocity and non-zero fluid velocity. The convergence characteristics of the three lowest natural
frequencies when the fluid is stationary are shown in Table 1. This table shows that the natural frequencies
converge as N increases. The converged values are close to the natural frequencies of the semi-circular beam
presented by Blevins [7]. As shown in Table 2, even when the fluid velocity is not zero or when U ¼ 2, the
natural frequencies still converge with increasing N. The convergence tests show that ten basis functions are
sufficient to obtain accurate solutions. For this reason, all further computations in this study were performed
with N ¼ 10.

The differences between this study and Ref. [6] can be clarified by a comparison between the equilibrium
equations and the linearized equations of motion given by Eqs. (5)–(8), and the corresponding equations
presented in Ref. [6]. Using the notation of this paper, the equilibrium equations of Ref. [6] can be expressed as
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Table 1

Convergence characteristics of the three lowest dimensionless natural frequencies when U ¼ 0

N o1 o2 o3

1 31.847 31.913 —

2 16.813 25.370 42.236

3 4.552 19.169 33.079

4 4.449 9.663 27.721

5 4.383 9.624 17.861

6 4.379 9.494 17.837

7 4.371 9.493 17.690

8 4.371 9.476 17.690

9 4.369 9.476 17.668

10 4.369 9.472 17.668

Ref. [7] 4.385 9.633 17.620

Table 2

Convergence characteristics of the three lowest dimensionless natural frequencies when U ¼ 2

N o1 o2 o3

1 30.555 33.364 —

2 16.788 25.453 42.311

3 4.424 19.290 33.159

4 4.031 10.096 27.635

5 3.998 9.520 18.248

6 3.968 9.468 17.322

7 3.963 9.430 17.284

8 3.960 9.421 17.221

9 3.960 9.416 17.213

10 3.959 9.414 17.203
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mf ðU=RÞ2ðu00e � v0eÞ þ EIðuiv
e � v000e Þ=R4 þ EAðue þ v0eÞ=R2 ¼ mf U2=R, (19)

mf ðU=RÞ2ðu0e � veÞ þ EIðu000e � v00e Þ=R4 � EAðu0e þ v00e Þ=R2 ¼ 0. (20)

These are the linearized versions of Eqs. (5) and (6). By contrast, the linearized equations of motion given in
Ref. [6] do not have the last terms on the left-hand sides of Eqs. (7) and (8); therefore, they can be rewritten as

ðmp þmf Þ €uþ 2mf ðU=RÞð _u0 � _vÞ þmf ðU=RÞ2ðu00 � v0Þ þ EIðuiv � v000Þ=R4

þ EAðuþ v0Þ=R2 � EA½ðue þ v0eÞðu
0 � vÞ�0=R3 ¼ 0, ð21Þ

ðmp þmf Þ€vþmf ðU=RÞð _uþ _v0Þ þmf ðU=RÞ2ðu0 � vÞ þ EIðu000 � v00Þ=R4

� EAðu0 þ v00Þ=R2 � EAðue þ v0eÞðu
0 � vÞ=R3 ¼ 0. ð22Þ

The deformed shape of the pipe was computed with both the linear and nonlinear equilibrium equations
when the semi-circular fluid-conveying pipe is in steady-state equilibrium. The equilibrium configurations are
presented in Fig. 2, where the deformed shapes are magnified by a factor of 5. Figs. 2a–c correspond to the
deformed configurations in steady-state equilibrium when U ¼ 2; 3, and 4, respectively. In these figures, the
dash–dotted lines represent the initial configuration of the pipe, or the steady-state configuration when U ¼ 0.
The deformed configurations shown by the solid line were obtained by solving the nonlinear equilibrium
equations of Eqs. (5) and (6). Additionally, the configurations of the dashed lines are obtained by solving the
linear equilibrium equations of Eqs. (9) and (10). As shown in Fig. 2, the difference between the deformed
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(a) (b) (c)

Fig. 2. Steady-state equilibrium configurations of the semi-circular pipe conveying fluid when: (a) U ¼ 2; (b) U ¼ 3; and (c) U ¼ 4. Initial

configuration (dash–dotted line); configuration for the nonlinear equilibrium equations (solid line); and configuration for the linearized

equations (dashed line).

Table 3

Three models of the steady-state equilibrium equations and the linearized equations of motion for the semi-circular pipe conveying fluid

Case Steady-state equilibrium equations Linearized equations of motion

Model I (proposed) Nonlinear equations of Eqs. (5) and (6) Eqs. (7) and (8)

Model II Linear equations of Eqs. (19) and (20) Eqs. (7) and (8)

Model III (Ref. [6]) Linear equations of Eqs. (19) and (20) Eqs. (21) and (22)
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shapes for the linear and nonlinear equilibrium equations is small when the fluid velocity is relatively low;
however, the difference becomes large with high fluid velocity. Furthermore, in Fig. 2c, the deformed shape
obtained from the linear equation exhibits fluctuation in the radial displacement, which cannot be explained
from a physical point of view. Therefore, it is reasonable to say that the linearized equilibrium equations
cannot be applied to the steady-state equilibrium configuration with large deformations. In other words,
when the fluid velocity is high, the nonlinear equilibrium equations should be used instead of the linearized
equations.

Next, some modelling issues regarding the steady-state equilibrium equations and the linearized equations
of motion for the semi-circular pipe conveying fluid will be discussed. For convenience, three types of models
are introduced when computing the natural frequencies of the semi-circular pipe. A model proposed in this
paper, Model I, adopts Eqs. (5) and (6) as the nonlinear equilibrium equations and Eqs. (7) and (8) as the
equations of motion linearized around the equilibrium configuration. Model II uses the same equations of
motion as Model I, but selects the linear equations (19) and (20) as the equilibrium equations instead of the
nonlinear equations. Finally, Model III, which is equivalent to the model presented in Ref. [6], consists of the
steady-state equilibrium equations of Eqs. (19) and (20) and the linearized equations of motion, Eqs. (21) and
(22). These three models are listed in Table 3.

The natural frequencies of the fluid-conveying semi-circular pipe were investigated for all models mentioned
above. The three lowest dimensionless natural frequencies of the semi-circular pipe are presented for
variations of the dimensionless fluid velocity in Fig. 3. Figs. 3a–c depict the natural frequencies for the first,
second and third modes, respectively. In these figures, the natural frequencies for Models I, II and III are
represented by solid, dashed, and dotted lines, respectively. As illustrated in Fig. 3, the differences in natural
frequencies between Models I and III increased with fluid velocity. However, the natural frequencies of Model II
demonstrated different behaviours for the variation of the fluid velocity as compared to the other models,
particularly for the range U ¼ 3–4. In this range, the curve of the natural frequencies for Model II appears to
have discontinuities. In fact, a sudden change of the equilibrium configurations was observed when they were
computed with the linear equilibrium equations, Eqs. (19) and (20). This sudden change is shown in Fig. 4, in
which the deformations are described on a true scale. As shown in Fig. 4, the equilibrium configurations obtained
from the linear equations exhibit a large difference, even though the fluid velocity is changed only slightly (from
U ¼ 3:7 to 3.8). In contrast, there is only a small difference in the configurations from the nonlinear equations of
Eqs. (5) and (6). Therefore, it may be concluded that the equilibrium configuration obtained from the nonlinear
equations is more reasonable than the configuration from the linear equations. The three lowest dimensionless
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Fig. 3. The three lowest dimensionless natural frequencies of a semi-circular pipe conveying fluid with variation of the dimensionless fluid

velocity: (a) first mode; (b) second mode; and (c) third mode. Model I (solid line); Model II (dashed line); and Model III (dotted line).
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Fig. 4. Steady-state equilibrium configurations of a semi-circular pipe conveying fluid when: (a) U ¼ 3:7 and (b) U ¼ 3:8. Initial

configuration (dash–dotted line); configuration for the nonlinear equilibrium equations (solid line); and configuration for the linearized

equations (dashed line).
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natural frequencies for the three models are listed and compared in Table 4; it was found that considerable
differences exist in natural frequencies between the three models.

5. Conclusions

In this study, the steady-state equilibrium equations and linearized equations of motion were investigated
for the dynamic analysis of a semi-circular fluid-conveying pipe. The validity of the linear and nonlinear
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Table 4

Comparison of the three lowest dimensionless natural frequencies for the three models when the semi-circular pipe has a fluid velocity of

U ¼ 5

o1 o2 o3

Model I 2.8868 8.8887 16.0533

Model II 3.2457 9.2738 16.6548

Model III 3.1445 9.1910 16.2490

Difference between Models I and II 12.4% 4.3% 3.7%

Difference between Models I and III 8.9% 3.4% 1.2%
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equilibrium equations was discussed, based on the equations of motion presented by Misra et al. [6]. The
natural frequencies for the three models were computed and compared. This study found that the nonlinear
steady-state equilibrium equations give more reasonable solutions than do the linear equilibrium equations.
Furthermore, the equations proposed in this study were validated, and it was found that they provided more
reliable natural frequencies than the equations of Ref. [6].
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